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Abstract. Within the framework of Feynman–Haken variational path integral theory, for the
first time, we calculate the ground-state energy of the electron and longitudinal-optical phonon
system in parabolic quantum wells with respect to a general potential. We propose a simple
expression for the Feynman energy, and compare it with those obtained by the second-order
Rayleigh–Schr̈odinger perturbation theory and Landau–Pekar strong-coupling theory. It is shown
both analytically and numerically that the results obtained from Feynman–Haken variational path
integral theory can be better than those from the other two theories. We also find in numerical
calculations that the binding energy of polarons becomes monotonically stronger as the effective
well depth decreases in the whole coupling regime. More interestingly, the localization, which
is caused by the effective potential, also can be perceived in the strong-coupling regime.

With the recent progress in micro-fabrication technology, it has become possible to fabricate
synthetic polar semiconductor structures with low dimensionality, such as dielectric slabs,
heterojunctions, quantum wells, quantum dots and quantum wires. One subject of interest is
the quantum well, which now can be fabricated within low-nanometre size. The properties
of an electron confined in a quantum well (QW) have attracted much attention, since the
quasi-two-dimensional (Q2D) polaron problem has become a reference problem for testing
various theoretical models and approximation methods, and it can present a comparatively
simple and realistic example for the interaction of a confined particle with quantized field.
Some usual QW structures (e.g. GaAs, GdS) are composed of polar compounds, therefore the
coupling of the electrons with polar-optical vibrations is in general important for determining
the electron dynamics and has been studied a great deal [1–10].

Considerable work has been done on the problem of polaron effects in QW structures,
both theory [4–9] and experiment [10]. At the same time, many phonon modes [2–8], such
as three-dimensional (3D) bulk optical (BO) modes, confined-slab BO phonon modes and
interface phonon modes, and various confining potentials were included. However, most of
the corresponding papers are associated with only the weak-coupling treatments or strong-
coupling treatments. The general consensus is that the polaronic correction to the ground
state increases considerably with the enhancement of the confining potential. Therefore, the
high degree of confinement of these structures would always lead to the enhancement of
the effective electron–phonon coupling. Consequently, the pure perturbation theory is not
perfectly appropriate for the low-dimensional semiconductor structure with weak coupling
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constant, since such systems could also exhibit some intermediate-, or even strong-coupling
features through the variation of potential confinement and the decrease of dimensions.

So, a theory which would be really suited to all coupling regimes simultaneously
is imperative to provide some qualitative insight into the investigations for polarons in
this system. Furthermore, it will be helpful to understand the role of the electron–LO
phonon interactions in such structures better, which is also of great theoretical and practical
importance. The purpose of this paper is to generalize the previous Feynman–Haken (FH)
path integral theory [11–13] to report the calculation of the ground-state energy for polarons
in QWs with parabolic confinement in the whole coupling regime. Here, we will take
into account only the non-screened interaction of the bulk LO phonon, not including the
interface phonon modes and the nonparabolicity of the conduction band. Such choices
cannot only facilitate the derivations in the theory; more importantly, can be much closer to
realistic cases. Moreover, we may compare our calculations to the second-order Rayleigh–
Schr̈odinger perturbation theory (RSPT) and Landau–Pekar (LP) strong-coupling theory.

The Hamilton for polarons in a parabolic quantum well can be written as

H = −1

2
∇2
r +

1

2
ω2
zz

2+
∑
q

a+q aq +
∑
q

[ξq exp(−iq · r)a+q + HC] (1)

where all vectors are three dimensions and the units have been chosen such as ¯h = m =
ω0 = 1 (Feynman units),ω0, the optical phonon frequency, is assumed to be dimensionless,
r refers to the position vector of the electron,ωz = ωhz/ω0, ωhz measures the confining
strength of the parabolic potential for directionz, a+q andaq are the creation and annihilation
operator for a LO phonon of wavevectorq and for the three dimensional systemsξq is always
given by [14]

|ξq |2 = 23/2π

vq2
α (2)

with ν being the crystal volume,α being the electron–phonon coupling constant. Here we
should mention that the phonon interactions have been already been eliminated.

As a first step, following Feynman’s [12] first procedure, integrating over the path
integral over the phonon coordinates, assuming that they are in their ground state, we can
readily obtain the true action corresponding to Hamiltonian (1).

S =
∫ tb

ta

dt

[
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]
+ 1

2

∑
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∫ tb

ta
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ta

|νk|2 eik·(r(t)−r(s)) e|t−s| dt ds. (3)

Next, we will choose a path integral trial action to obtain a variational expression for
the ground-state energy. We can follow the procedure developed by Haken [11] in the
treatment of the exciton–phonon problem. The trial actions1 can have the form as follows.

s1 =
∫ tb

ta

dt

[
−1

2
∇2
r − Veff (r(t))

]
=
∫ tb

ta

dt Leff (4)

where Veff (r(t)) is the effective trial potential to be chosen later. The corresponding
quantum-mechanical Hamiltonian then satisfies

Heff8
eff
n (r) =

[
1

2
P 2+ Veff (r)

]
8eff
n (r) = Eeffn 8eff

n (r) (5)

whereEeff0 and8eff

0 (r) are the ground-state energy and wavefunction ofHeff .
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Similar to those in [12] and [13], we can obtain the FH energy as

EFH = 〈8eff

0 (r)|
[

1

2
P 2+ 1

2
ω2
zz

2

]
|8eff

0 (r)〉 −
∑
j

∑
k

|〈8eff

j |vk e−ik·r|8eff

0 〉|2
E
eff

j − Eeff0 + 1
. (6)

It is to noted that, if the effective potentialVeff (r) is chosen to be a form such that the
corresponding Schrödinger equation can be analytically solved, substitution of the relevant
energy eigenfunctions and eigenvalues into equation (6) will produce the upper bound to
the exact ground-state energy of the Hamiltonian (1).

According to the symmetry of the system studied, we will choose a variational effective
potential as the following harmonic-oscillator type, which is only isotropic in theρ-plane
(xy-plane).

Veff (r) = 1
2λ

2
ρρ

2+ 1
2λ

2
zz

2 (7)

whereλρ andλz are variational parameters to be determined. Such a form ofVeff (r) is
different from those in [11]–[13] and more suitable for the problem in quantum wells.

The energy eigenfunctions and eigenvalues corresponding to potential (7) are:

φj (r) =
(

λρλ
1/2
y

π3/22j1+j2+j3j1!j2!j3!

)1/2

Hj1(
√
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2] (8)

E
eff

j = (jx + jy + 1)λρ + (jz + 1
2)λz

whereHn(�) is the Hermite polynomial of ordern. Then the first term of equation (6)
becomes

I1 = 1

2
λρ + 1

4
λz +

ω2
z

4λz
. (9)

If we use the transformation:
1

Ej − E0+ 1
=
∫ ∞

0
exp[−(Ej − E0+ 1)t ] dt (10)

and the Slater sum rule for the Hermite polynomials:∑
n

1

2nn!
Hn(λx)Hn(λx

′) exp

[
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2
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]
= exp(p)√

2 sinh(2p)
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{(
−1

4
λ2

)
[(x + x ′)2 tanhp + (x − x ′)2 cothp]

}
. (11)

Also, we can easily perform the summation overjx , jy andjz in (6) respectively, then using∑
q

exp[iq · (r − r′)]
q2

= v

4π

1

|r − r′| . (12)

Then, we can integrate over the electron position vectorsr and r′ by transforming these
vectors into the centre-of-mass vectoru = (r + r′)/2 and the relative vectorsv = r − r′,
then the second term of equation (6) is simplified to:

I2 = −
∫ ∞

0
dt e−tα

√
λz

π(1− e−λzt )
tan−1

√
x − 1√

x − 1
(13)

where

x = λz(1+ coth(λzt/2))

λ(1+ coth(λt/2))
. (14)
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Finally the FH energy reads,

EFH = I1+ I2. (15)

So far, for givenα and ωz, one can obtain the ground-state energy of Hamiltonian (1)
by minimizing equation (15) with respect toλρ andλz. It should be pointed out that this
Feynman energy expression (15) is suitable for the entire range of electron–phonon coupling
constantα, and the strength of the confining potentialωz.

In order to calculate the polaronic correction to the ground-state energy of this system,
we also need to have the energy in a quantum well without electron–phonon interaction.
Obviously, it can be obtained from equation (9) by finding out the optimal fit toλρ andλz,
where the polaronic energy correction is just corresponding to the difference between these
two cases.

Physically, it is expected that the polaronic energy correction−1E is more pronounced
for larger electron–phonon coupling constantα. This is consistent with our numerical results
displayed in figure 1, where we plot the variation of the polaron binding energy1EFH as
the function of effective well depthl = 1/

√
ωz for different values ofα. It is also found

that the value of1EFH is more sensitive to the value ofα and decreases with largerl.

Figure 1. The binding energy of polarons in quantum wells within the FH path integral theory
as a function of the effective well depthl at α = 0.005, 0.5, 1, 5 and 10.

To show the effectiveness of this approach, we will also study this system within the
well known Landau–Pekar (LP) variational theory [15] and the second-order RSPT.

Firstly, the strong-coupling bound polarons in quantum wells can be investigated by the
LP variational scheme. Alternatively, we proceed to give a more concise representation of
this scheme. The adiabatic polaron ground state can be given through the following product
ansatz

| · · ·〉 = φ(r)|A〉 = λρ(λz)
1/2

π3/4
e−(λ

2
ρρ

2+λ2
zz

2)/2 e(
∑

q fqb
+
q +HC)|0〉 (16)

where|0〉 is the unperturbed zero phonon state satisfied for allk, λρ andλz are the variational
parameters, they will be determined variationally.
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One can easily derive the LP energy as follows.

ELP = 1

2
λρ + 1

4
λz +

ω2
z

4λz
− α√

π

√
λρ

B
sin−1(B) (17)

whereB = √1− λρ/λz, andλρ andλz are the variational parameters.
For convenience, we introduce the relative difference,η, for the polaronic energy

correction1E obtained by these two variational approaches: FH and LP methods.

η = 1EFH −1ELP
1EFH

. (18)

In figure 2, we plot the values ofη as a function of the effective well depthl for coupling
constantsα. It is obvious that the polaronic energy correction obtained in FH path integral
theory is considerably larger than those from LP theory. The trend is more substantial not
only with the decrease of the coupling constantα but also with the increase of the effective
well depth l. When l → 0, the difference between these two theories becomes minute.
Probably, this is just because the electron–phonon coupling is extremely strengthened for
the quantum wells in this limit, and LP theory is known to be more suitable for the strong-
coupling or strong-Coulomb-binding limit. Overall, we find the FH path integral theory is
superior to the famous LP theory.

Figure 2. The relative difference between results for binding energy of polarons in quantum
wells within the FH theory and LP theory,η = (1EFH −1ELP )/1EFH , as a function of the
effective well depthl at α = 5, 7.5, 10.

Next, we will compare RSPT with FH path integral theory for quantum wells as well
as LP theory. Obviously, the ground-state energyEPT2 in the second-order RSPT can be
straight forwardly deduced from (15) by settingλρ = 0, andλz = ωz. It has the form
exactly like the following.

EPT2 = 1

2
ωz − α

√
ωz

π

∫ ∞
0

dt
e−t√

1− e−ωzt
tan−1

√
x ′ − 1√

x ′ − 1
(19)

wherex ′ = 1
2ωzt [1+ coth( 1

2ωzt)].
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Similarly, we can introduce the relative difference,η′, for the polaronic energy correction
1E obtained by these two theories: FH path integral theory and the second-order RSPT

η′ = 1EFH −1EPT2

1EPT2
. (20)

The results are shown in figure 3. It is clearly shown that1EFH is really higher than
1EPT2 in all cases. After careful inspection of this figure, it is not different to find that:
(1) In the weak-coupling limit (i.e.α < 3), the results from FH path integral theory are
in good agreement with those from the RSPT. (2) In the intermediate-coupling regime (i.e.
α = 3, 4, 5), there exists a critical well depthlc. Below lc, the difference between the
two calculated binding energies becomes substantially larger whenl decreases. In contrast,
abovelc, the difference is so small that it can be neglected. Here we can find the RSPT
is also very effective. (3) The relative polaronic energy decreases monotonically with the
well depth l and changes very slowly as the well depthl asymptotically approaches the
bulk limit. We can perceive the localization, which is caused by the effective potential (in
the form (7)).

Figure 3. The relative difference between results for binding energy of polarons in quantum
wells within the FH theory and RSPT,η′ = (1EFH − 1EPT2)/1EPT2, as a function of the
effective well depthl at α = 3, 4, 5, 6.

So far, we have shown that the path integral theory can produce better results than the
second-order RSPT and LP variational theory can do in the whole coupling regime.

Finally, we will address a very important problem, which is relevant to the appearance of
the critical well depthlc. This form is especially reasonable in the strong-coupling regime.
The polaron wavefunction should be localized in all directions with a factor∼ e−λ

2r2
owing

to the strong coupling. This has been shown in the strong-coupling LP theory [15] and the
modified one [16]. More interesting, the effective potential also exists in the intermediate-
and weak-coupling cases. In figure 4, we present the variation of effective transverse spatial
extentξρ(ξρ = 1/

√
λρ) as a function of well depthl at differentα. We can perceive that

for α 6 5, all curves diverge at the critical well depthlc, which just corresponds to the
vanish of the transverse part1

2λρρ
2. Whether this part takes effect or not depends only on

the valuesα andl. Theξρ remains finite forα > 5 and arbitraryl. This is just because the
strong-coupling features exist as well in these systems even without the effective potential.
Moreover, it is very clear in all the curves thatξρ reduces with the shrinkage of the quantum
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well. In other words, the transverse part1
2λρρ

2 in the effective potential (7) is strengthened
with the enhancement of the well confining potential; so is the longitudinal part. Thus, the
strength of the well potential is equivalent to the enhancement of the effective electron–
phonon coupling, which is consistent with the general trend in the literature.

Figure 4. The variation of effective transverse spatial extentξρ(ξρ = 1/
√
λρ) as a function of

well depthl at α = 3, 4, 5, 6, 8.

In summary, we have studied the polaronic effect of quantum wells within the framework
of FH variational path integral theory. By selecting a more general harmonic-type effective
potential, we have derived a concise expression for the ground-state energy of this system.
We observe that the polaronic energy correction is more sensitive to the electron–phonon
coupling constant than the other parameters. Moreover, compared to the results obtained
by LP variational theory and the second-order RSPT, the present variational results are
more effective and accurate. More interestingly, by numerical calculation, we can perceive
the transition from two-dimensional free polarons to quantum wells, and then to three-
dimensional free polarons in the weak-coupling regime.

Finally, we should point out the present derivation can be easily extended to more
complicated polar semiconductor structures, such as the interface phonon mode in the
GaAs/AlGaAs, which is known to be a strong scattering mechanism. This work is in
progress.
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